

Appendix C Reference Standards and Data for Water

Table C.1. Reference standards for radionuclides in water

Parameter ^a	National primary drinking water standard ^b	DCS ^c
²⁴¹ Am		740
²¹⁴ Bi		1,000,000
¹⁰⁹ Cd		42,000
¹⁴³ Ce		210,000
⁶⁰ Co		14,000
⁵¹ Cr		3,800,000
¹³⁷ Cs		4,100
¹⁵⁵ Eu		1,000,000
Alpha particles ^{d,e}	15	
Beta particles and photon emitters (mrem/year)e	4	
³ H Tritated Water		2,600,000
³ H Organic Bound Tritium		1,000,000
131		2,800
⁴⁰ K		16,000
²³⁷ Np		1,400
²³⁴ Pa		300,000
²³⁸ Pu		430
$^{239/240}P_{U}$		400
²²⁶ Ra		280
²²⁸ Ra		73
²²⁶ Ra and ²²⁸ Ra combined ^e	5	
¹⁰⁶ Ru		19,000
⁹⁰ Sr		1,700
⁹⁹ Tc		390,000
²²⁸ Th		830
²³⁰ Th		720
²³² Th		620
²³⁴ Th		84,000
234∪		1,200

Table C.1. Reference standards for radionuclides in water (continued)

Parameter ^a	National primary drinking water standard ^b	DCS ^c
235 U		1,300
236∪		1,300
238⋃		1,400
Uranium, total (ug/L)e	30	

^a Only the radionuclides included in the Oak Ridge Reservation monitoring programs are listed. Unless labeled otherwise, units are pCi/L.

Table C.2. TDEC and EPA nonradiological water quality standards and criteria (µg/L)

Chemical	TDEC and EPA drinking water standards ^a	TDEC fish and aquatic life criteria		TDEC recreation criteria water + organisms,
		Maximum	Continuous	organisms only ^b
Acenaphthene				670, 990
Acrolein		3.0	3.0	6, 9
Acrylonitrile (c)				0.51, 2.5
Alachlor	2 (E1, T)			
Aldicarb ^c	3 (E1)			
Aldicarb sulfone ^c	2 (E1)			
Aldicarb sulfoxide ^c	4 (E1)			
Aldrin (c)		3.0	_	0.00049, 0.00050
Aluminum	50 to 200 (E2)			
Anthracene				8,300, 40,000
Antimony	6 (E1, T)			5.6, 640
Arsenic (c)	10 (E1, T)			10.0, 10.0
Arsenic(III)		340 ^d	150 ^d	
Asbestos	7 million fibers/L (MFL) (E1)			
Atrazine	3 (E1, T)			
Barium	2,000 (E1, T)			
Benzene (c)	5 (E1, T)			22, 510
Benzidine (c)				0.00086, 0.0020
Benzo(a)anthracene (c)				0.038, 0.18
Benzo(a)pyrene (PAHs) (c)	0.2 (E1, T)			0.038, 0.18
Benzo(b)fluoranthene (c)				0.038, 0.18
Benzo(k)fluoranthene (c)				0.038, 0.18
Beryllium	4 (E1, T)			
a-BHC (c)				0.026, 0.049
b-BHC (c)				0.091, 0.17

b 40 Code of Federal Regulations Part 141, National Primary Drinking Water Regulations, Subparts B and G. The drinking water standards are presented strictly for reference purposes and have regulatory applicability only for public water supplies.

^c DOE. "Derived Concentration Technical Standard," DOE-STD-1196-2022, December 2022.

^d Including ²²⁶Ra and excluding radon and uranium.

e Carcinogenic pollutant (EPA uses a 10-6 level to determine an increased risk of cancer)

Table C.2. TDEC and EPA nonradiological water quality standards and criteria (µg/L) (continued)

TDEC and EPA drinking water standards ^a	TDEC fish and aquatic life criteria		TDEC recreation criteria water + organisms,
	Maximum	Continuous	organisms only ^b
0.2 (E1, T)	0.95	_	0.98, 1.8
			0.30, 5.3
6 (E1, T)			1,400, 65,000 12, 22
			0.0010, 0.0029
10 (E1)			<u>, </u>
- ()			43, 1,400
			1,500, 1,900
5 (E1, T)	1.8e	0.72e	
	2.1	2.1	
40 (E1, T)			
			2.3, 16
	2.4	0.0043	0.0080, 0.0081
			<u>, </u>
	19	11	
* *			
			130, 1,600
, , ,			• •
			4.0, 130
			<i>57, 4,</i> 700
			1,000, 1,600
			81, 150
	0.083	0.041	
100 (E1, T)			
	570°	74 ^e	
	16 ^d	11 ^d	
			0.038, 0.18
630/100 mL (geometric mean) (T); no more than 5% of samples per month can be positive for total coliforms (E1)	630/100 mL, E. coli (geometric mean); 2880/100 mL, maximum, E. coli (single sample) 630/100 mL, E. coli (geometric mean); 2880/100 mL, maximum, E. coli (single sample)		126/100 mL (geometric mean), E. coli; 487/100 mL, maximum lakes/reservoirs/state scenic river/Exceptional Tennessee Water/Outstanding Natural Resource Water, E. coli; 941/100 mL, maximum, other water bodies, E.
	water standards° 0.2 (E1, T) 6 (E1, T) 10 (E1) 5 (E1, T) 40 (E1, T) 5 (E1, T) 2 (E1, T) 250,000 (E2) 4,000 (E1) 1,000 (E1) 4,000 (E1) 100 (E1, T) 100 (E1, T) 630/100 mL (geometric mean) (T); no more than 5% of samples per month can be positive for	water standards° criteria Maximum 0.95 6 (E1, T) 0.95 5 (E1, T) 1.8° 2.1 2.1 40 (E1, T) 2.4 2 (E1, T) 2.4 250,000 (E2) 4,000 (E1) 4,000 (E1) 19 800 (E1) 1,000 (E1, T) 100 (E1, T) 570° 630/100 mL (geometric mean) (T); no more than 5% of samples per month can be positive for total coliforms (E1) 630/100 mL (geometric moli (single scroli (singl	water standards° criteria Maximum Continuous 0.2 (E1, T) 0.95 - 6 (E1, T)

Table C.2. TDEC and EPA nonradiological water quality standards and criteria (µg/L) (continued)

Chemical	TDEC and EPA drinking water standards ^a	TDEC fish and aquatic life criteria		TDEC recreation criteria water + organisms,
		Maximum	Continuous	organisms only ^b
Color	15 color units (E2)			
Copper	1,300 (E1 "Action Level") 1,000 (E2)	13 ^e	9.0 ^e	
Cyanide (as free cyanide)	200 (E1, T)	22 ^f	5.2 ^f	140, 140
2,4-D	70 (E1, T)			
(Dichlorophenoxyacetic acid)				
4,4'-DDD (b) (c)				0.0031, 0.0031
4,4'-DDE (b) (c)				0.0022, 0.0022
4,4'-DDT (b) (c)		1.1	0.001	0.0022, 0.0022
Dalapon	200 (E1, T)			
Demeton		_	0.1	
Diazinon		0.17	0.17	
Dibenz(a,h)anthracene (c)				0.038, 0.18
1,2-dibromo-3-	0.2751 T)			
chloropropane (DBCP) (c)	0.2 (E1, T)			
1,2-Dichlorobenzene (ortho-)	600 (E1, T)			420, 1,300
1,3-Dichlorobenzene (meta-)				320, 960
1,4-Dichlorobenzene (para-)	75 (E1, T)			63, 190
3,3-Dichlorobenzidine (c)				0.21, 0.28
Dichlorobromomethane (c)				5.5, 170
1,2-Dichloroethane (c)	5 (E1, T)			3.8, 370
1,1-Dichloroethylene	7 (E1, T)			330, 7,100
Cis-1,2-Dichloroethylene	70 (E1, T)			· ·
trans 1,2-Dichloroethylene	100 (E1, T)			140, 10,000
2,4-Dichlorophenol				77, 290
1,2-Dichloropropane (c)	5 (E1, T)			5.0, 150
1,3-Dichloropropene (c)	, , ,			3.4, 210
Dieldrin (b)(c)		0.24	0.056	0.00052, 0.00054
Diethyl phthalate				17,000, 44,000
Di (2-ethylhexyl) adipate	400 (E1, T)			17 10001 1 11000
Dinoseb	7 (E1, T)			
Dimethyl phthalate	, (, .,			270,000, 1,100,000
Dimethylphenol				380, 850
Di-n-butyl phthalate				2,000, 4,500
Dinitrophenols (DNP)				69, 5,300
2,4-Dinitrotoluene (DNT) (c)				
	2 E 5 /E1 T)			1.1, 34 0.000001°, 0.000001°
Dioxin (2,3,7,8-TCDD) (b) (c)	3 E-5 (E1, T)			0.0000019, 0.0000019
Diquat	20 (E1, T)			0.24.2.0
1,2-Diphenylhydrazine (Hydrazobenzene) (c)				0.36, 2.0
a-Endosulfan		0.22	0.056	62, 89
b-Endosulfan		0.22	0.056	
Endosulfan sulfate		0.22	0.030	62, 89
	100 (E1 T)			62, 89
Endothall	100 (E1, T)			

Table C.2. TDEC and EPA nonradiological water quality standards and criteria (µg/L) (continued)

Chemical	TDEC and EPA drinking water standards°	TDEC fish and aquatic life criteria		TDEC recreation criteria water + organisms,
		Maximum	Continuous	organisms only ^b
Endrin	2 (E1, T)	0.086	0.036	0.059, 0.06
Endrin aldehyde				0.29, 0.30
Ethylbenzene	700 (E1)			530, 2,100
Ethylene dibromide (1,2- Dibromoethane, EDB)	0.05 (E1, T)			
Fluoranthene				130, 140
Fluorene				1,100, 5,300
Fluoride	4,000 (E1) 2,000 (E2)			
Foaming agents	500 (E2)			
Glyphosate	700 (E1, T)			
Guthion		_	0.01	
Haloacetic acids (HAA5) (c)	60 (E1)			
Heptachlor (c)	0.4 (E1, T)	0.52	0.0038	0.00079, 0.00079
Heptachlor epoxide (c)	0.2 (E1, T)	0.52	0.0038	0.00039, 0.00039
Hexachlorobenzene (b)(c)	1 (E1, T)			0.0028, 0.0029
Hexachlorobutadiene (b)(c)				4.4, 180
Hexachlorocyclohexane- Technical (HCH) (b)(c)				0.123, 0.414
Hexachlorocyclopentadiene	50 (E1, T)			40, 1,100
Hexachloroethane (c)				14, 33
Indeno(1,2,3-cd)Pyrene (c)				0.038, 0.18
Iron	300 (E2)			
Isophorone (c)				350, 9,600
Lead	5 (T) 15 (E1 "Action Level")	65 ^e	2.5e	
Malathion		_	0.1	
Manganese	50 (E2)			
Mercury (b)	2 (T) 2 (E1 inorganic)	1.4 ^d	0.77 ^d	0.05, 0.051
Methoxychlor	40 (E1, T)	-	0.001	
Methyl bromide				47, 1,500
2-Methyl-4,6-dinitrophenol (4,6-Dinitro-O-cresol, DNOC)				13, 280
Methylene chloride (Dichloromethane) (c)	5 (E1, T)			46, 5,900
Nickel	100 (T)	470e	52e	610, 4,600
Nitrate as N	10,000 (E1,T)			
Nitrite as N	1,000 (E1, T)			
Nitrobenzene				17,690
Nitrosamines				0.0008, 1.24
N-Nitrosodibutylamine (NDBA) (c)				0.063, 2.2

Table C.2. TDEC and EPA nonradiological water quality standards and criteria (µg/L) (continued)

Chemical	TDEC and EPA drinking water standards ^o	TDEC fish and aquatic life criteria		TDEC recreation criteria water + organisms,
		Maximum	Continuous	organisms only ^b
N-Nitrosodiethylamine (NDEA) (c)				0.008, 2.4
N-Nitrosopyrrolidine (NPYR) (c)				0.16, 340
N-Nitrosodimethylamine (NDMA) (c)				0.0069, 30
N-Nitrosodi-n-propylamine (c)				0.05, 5.1
N-Nitrosodiphenylamine (c)				33, 60
Nonylphenol		28.0	6.6	,
Odor	3 Threshold Odor Numbers (E2) ^h			
Oxamyl (Vydate)	200 (E1, T)			
Parathion		0.065	0.013	
Pentachlorobenzene (b)				1.4, 1.5
Pentachlorophenol (c)	1 (E1, T)	19 ⁱ	1 <i>5</i> ⁱ	2.7, 30
pΗ	6.5 to 8.5 units (E2) 6.0 to 9.0 units (T)	6.0 to 9.0 units for wadeable streams; 6.5 to 9.0 units for larger rivers, lakes, reservoirs, and wetlands		6.0 to 9.0 units
Phenol				10,000, 860,000
Picloram	500 (E1,T)			
Polychlorinated biphenyls (PCBs), total (b)(c)	0.5 (E1, T)	_	0.014	0.00064, 0.00064
Pyrene				830, 4,000
Selenium	50 (E1, T)			170, 4,200
Selenium (lentic) ⁱ		20	1.5^{k}	
Selenium (lotic) ¹		20	3.1 ^k	
Silver	100 (E2)	3.2e	_	
Simazine	4 (E1, T)			
Styrene	100 (E1, T)			
Sulfate	250,000 (E2)			
1,2,4,5-Tetrachlorobenzene (b)				0.97, 1.1
1,1,2,2-Tetrachloroethane (c)				1.7, 40
Tetrachloroethylene (Perchloroethylene, PCE) (c)	5 (E1, T)			6.9, 33
Thallium	2 (E1, T)			0.24, 0.47
Toluene	1,000 (E1, T)			1,300, 15,000
Total dissolved solids	500,000 (E2, T)			
Toxaphene (b)(c)	3 (E1, T)	0.73	0.0002	0.0028, 0.0028
Tributyltin (TBT)		0.46	0.072	
1,2,4-Trichlorobenzene (1,2,4-TCB)	70 (E1, T)			35, 70

Table C.2. TDEC and EPA nonradiological water quality standards and criteria (µg/L) (continued)

Chemical	TDEC and EPA drinking water standards°	TDEC fish and aquatic life criteria		TDEC recreation criteria water + organisms,
		Maximum	Continuous	organisms only ^b
1,1,1-Trichloroethane (Methyl Chloroform)	200 (E1, T)			
1,1,2-Trichloroethane (c)	5 (E1, T)			5.9, 160
Trichloroethylene (TCE) (c)	5 (E1, T)			25, 300
2,4,5-Trichlorophenol				1,800, 3,600
2,4,6-Trichlorophenol (c)				14, 24
2,4,5 Trichlorophenoxyprioponic acid (2,4,5-TP, Silvex)	50 (E1, T)			
Trihalomethanes (total) (THMs) (c)	80 (E1)			
Vinyl chloride (c)	2 (E1, T)			0.25, 24
Xylenes (total)	10,000 (E1, T)			
Zinc	5,000 (E2)	120e	120°	7,400, 26,000

^a E1 = EPA Primary Drinking Water Standards; E2 = EPA Secondary Drinking Water Standards; T = TDEC domestic water supply criteria.

Acronyms and other definitions:

EPA = US Environmental Protection Agency

TDEC = Tennessee Department of Environment and Conservation

- (b) = bioaccumuative parameter (TDEC)
- (c) = carcinogenic pollutant (TDEC uses a 10⁻⁵ risk level and EPA uses a 10⁻⁶ level to determine an increased risk of cancer)

^b For each parameter, the first recreational criterion is for "water and organisms" and is applicable on the Oak Ridge Reservation (ORR) only to the Clinch River, because it is the only stream on ORR classified for both domestic water supply and for recreation. The second criterion is for "organisms only" and is applicable to the other streams on ORR. TDEC uses a 10-5 risk level for recreational criteria for all carcinogenic pollutants (designated as (c) under the "Chemical" column). Recreational criteria for noncarcinogenic chemicals are set using a 10-6 risk level. (Note: All federal recreational criteria are set at a 10-6 risk level.)

^c Administrative stay of the effective date.

^d Criteria are expressed as dissolved.

^e Criteria are expressed as dissolved and are a function of total hardness (mg/L). Criteria displayed correspond to a total hardness of 100 mg/L.

^f Criteria may be applied as free cyanide if Standard Methods 4500-CN, 4500-CN G, or OIA-1677 are used.

⁹ Total dioxin in the sum of the concentrations of all dioxin and dibenzofuran isomers after multiplication by Toxic Equivalent Factors.

^h Threshold Odor Numbers (TON) are whole numbers that indicate how many dilutions it takes to produce odor-free water.

ⁱCriteria are expressed as a function of pH; values shown correspond to a pH of 7.8.

i Lentic – Still water aquatic ecosystems such as ponds, lakes, or reservoirs.

^k The numeric water criteria are applicable for all purposes, but for water quality assessment, fish tissue values may be used to confirm or refute impacts to aquatic life in accordance with and using values from EPA's Final Criterion: Aquatic Life Ambient Water Quality Criterion for Selenium – Freshwater (June 30, 2016).

Lotic – Flowing water aquatic ecosystems such as streams and rivers.